HISTORIA DE LOS LOGARITMOS
Un ejemplo del desarrollo de un concepto en matemáticas
No se debe ver la historia de las matemáticas como una marcha triunfal a lo largo de una avenida sin obstáculos. Al contrario, esta historia presenta numerosas interrupciones, y el camino seguido raramente se parece a una línea recta, encontrándose incluso a veces en un callejón sin salida....Hubo avances bruscos debidos a nuevos conceptos, que respondieron a problemas a veces muy alejados de las cuestiones iniciales que los habían generado.
Los logaritmos son un ejemplo de este desarrollo caótico y fecundo a la vez. Partiendo de una idea simple, pero cuya puesta en práctica necesitaba un gran trabajo (la construcción de las tablas), han sido en primer lugar el motor de un desarrollo de las matemáticas aplicadas, antes de revelarse como la solución de un problema geométrico. Objeto de estudios teóricos seguidos de profundizaciones, han sido también una herramienta indispensable para la modelización de múltiples fenómenos físicos.
La presentación pedagógica tradicional de los logaritmos privilegia el logaritmo llamado "neperiano". Se lo introduce como la función primitiva de la función inversa que se anula para el valor 1 de la variable. Aunque esta introducción sea matemáticamente satisfactoria se halla muy lejos de ser evidente para los estudiantes y su propiedad fundamental queda oculta. Por supuesto, el problema histórico que llevó a concebir los logaritmos también está ausente, mientras que su uso para presentar esta nueva noción tiene la ventaja de la simplicidad: se trata sencillamente de construir una tabla que permita realizar rápidamente multiplicaciones, divisiones y potencias.
Hoy la utilización de los logaritmos para el cálculo está en desuso, pero el concepto sigue siendo fundamental en la cultura matemática básica y están presentes tanto en física como en química. Su historia es sin duda un capítulo modesto, pero su ejemplaridad, incluso su riqueza dan testimonio del desarrollo de las Matemáticas.
PROBLEMÁTICA:
El origen del concepto de logaritmo se encuentra en un problema matemático, sin duda, pero en un problema de matemáticas aplicadas: se trata de simplificar la pesada tarea de los calculadores, excesivamente complicada en cuanto implica multiplicaciones, divisiones, incluso potencias o extracción de raíces.
En los siglos XIV, XV y XVI (y seguramente antes) los campos implicados no son tanto las cuestiones económicas como los problemas de agrimensura, y sobre todo, la astronomía, en particular en sus aplicaciones a la navegación. Estas operaciones exigen ahora cierta precisión . Si los progresos de la numeración han podido hacer avanzar las cosas, como la utilización de las cifras llamadas árabes, los algoritmos de multiplicación y de división son desconocidos; los números racionales, sistemáticamente escritos en forma de parte entera más una fracción de la unidad, convierten incluso a la suma en una operación muy complicada.
Se debe al matemático árabe IBN JOUNIS el haber propuesto, en el siglo XI, un método, llamado prostaféresis , para reemplazar la multiplicación de dos senos por una suma de las mismas funciones, y este método permanecerá mucho tiempo en vigor. La multiplicación de senos (y su división) es una operación esencial, ya que todo cálculo en geometría, en particular la resolución de triángulos, es una operación sobre longitudes no medibles, obtenidas a partir de la medida de ángulos.
A ARQUÍMEDES se debe la idea fundamental que generaría los logaritmos:
"Cuando varios números están en proporción continua a partir de la unidad, y algunos de estos números se multiplican entre si, el producto estará en la misma progresión, alejado del más grande de los números multiplicados tantos números como el más pequeño de los números multiplicados lo está de la unidad en la progresión, y alejado de la unidad la suma menos uno de los números de lugares que los números multiplicados están alejados de la unidad"
(Arenario, trad. VERECKE)
Sea: con o sea:
La idea de ARQUÍMEDES vuelve a aparecer en los trabajos de CHUQUET y de STIFEL, en el siglo XV, pero, ni uno ni otro han tenido suficiente influencia para imponer la comparación de una progresión geométrica con una progresión aritmética como medio de cálculo, o como nuevo campo de investigación matemática.
NAPIER Y BRIGGS
John NAPIER (escrito también NEPER) nació en 1550. Procedente de la baja nobleza escocesa, mostró toda su vida un espíritu curioso y dinámico, a pesar de una vida alejada de los centros culturales de la época. La introducción de los logaritmos no es su único título de gloria, puesto que escribió también un texto sobre las ecuaciones e imaginó además un sistema de cálculo por medio de regletas graduadas (Rabdología)
En 1614 publicó el "Mirifici logarithmorun canonis descriptio..." donde, utilizando una aproximación cinemática, pone en relación una progresión geométrica con una progresión aritmética. La primera es la de las distancias recorridas con velocidades proporcionales a ellas mismas, la segunda, la de las distancias recorridas con velocidad constante; éstas son entonces los "logaritmos" de las primeras ( el neologismo es de NAPIER). La unidad elegida es 107, y la obra comprende una tabla de logaritmos de senos, cuya importancia hemos mencionado anteriormente, con los ángulos variando de minuto en minuto. En 1619 apareció una segunda obra, "Mirifici logarithmorum canonis constructio...." donde el autor explica cómo calcular los logaritmos. Esta obra es póstuma, puesto que NAPIER murió en 1617.
Mientras tanto, un eminente matemático de Londres, Henry BRIGGS, había descubierto la importancia de estos trabajos y viajó a Escocia para encontrarse con el autor. Retomando la idea fundamental, pero considerando una progresión geométrica simple, la de las potencias de 10, publica en 1617 una primera tabla, con 8 decimales. El logaritmo de un número x es por lo tanto definido como el exponente n de 10, tal que x sea igual a 10 elevado a n.
Siguieron otras tablas que permitieron la difusión del método, en particular en el continente. En realidad, la idea estaba en el aire; un colaborador de KEPLER, el suizo BÜRGI, proponía en la misma época, para simplificar los cálculos que debía realizar, hacer corresponder una progresión aritmética (números rojos) y una progresión geométrica (números negros); sin embargo sus trabajos no fueron publicados hasta 1620.
PRIMERAS UTILIZACIONES
Es en Alemania donde se van a desarrollar los logaritmos. Al principio de 1617, KEPLER, que se hallaba fortuitamente en Viena, tiene la ocasión de consultar la primera obra de NEPER. Hojeándola rápidamente, comete un error de interpretación. El año siguiente hará partícipe de ello a un amigo en una carta:
" Un barón escocés del que no recuerdo su nombre, propone un brillante trabajo en el que reemplaza la necesidad de la multiplicación y de la división, por la simplicidad de la suma y de la sustracción, sin emplear los senos: en cambio, necesita la regla de las tangentes; y la cantidad, la amplitud y la pesadez de la adición y de la sustracción sustituyen la dificultad de la multiplicación y la división"
Ahora bien KEPLER utiliza evidentemente la regla de los senos, tanto en un triángulo plano como esférico; para él, el trabajo de NEPER no tiene interés. En el transcurso de 1618, dispone, sin embargo, de la obra de Benjamín URSINUS: "Trigonometría Logarithmica John Neperi"; reconoce entonces su error y se muestra entusiasta de este nuevo cálculo. En 1619, por fin, el libro "Mirifici Logarithmorum descriptio" llega a Linz, a KEPLER, el cual emprende rápidamente la tarea de modificar el concepto para adaptarlo a sus necesidades. Su adhesión es tal que dedica sus efemérides de 1620 ( aparecidas al final de 1619) al "célebre y noble señor JOHN NEPER, barón de MERCHISTON"
La difusión en el continente de esta nueva noción se debe sobre todo a las tablas publicadas por el flamenco Adrien ULACQ, en 1628, retomando las tablas de BRIGGS. El objetivo era realizar un tratado de cálculo práctico, en particular para uso de los agrimensores. Las primeras tablas fueron seguidas por otras, cada vez más precisas, y en ellas se menciona que su principal aplicación son los cálculos trigonométricos.
El método para la construcción de las tablas pasa primero, evidentemente, por la determinación de los logaritmos de los números primos; los demás se calculan entonces por simple suma. Se trata de hecho de tomar "o bien medias proporcionales o bien raíces cuadradas". EULER escribirá en 1748:
"Así tomando medias proporcionales, se llega a encontrar Z=5,000000, a lo que responde el logaritmo buscado 0,698970, suponiendo la base logarítmica = 10. En consecuencia 1069897/100000 = 5 aproximadamente. Es de esta manera como BRIGGS y ULACQ han calculado la tabla ordinaria de logaritmos, aunque se haya encontrado después métodos más expeditivos."
EL ÁREA BAJO LA HIPÉRBOLA
La etapa esencial del desarrollo matemático del concepto se encuentra en su relación con la hipérbola. Esta relación se debe al jesuita GREGOIRE DE SAINT-VINCENT, nacido en Brujas en 1584. Había acabado la redacción de un "Opus geometricorum...." en 1630, en el cual pretendía haber resuelto los problemas de la cuadratura del círculo y de la hipérbola. Esta obra no fue publicada hasta 1647, y aunque fue un fracaso en cuanto a la cuadratura del círculo, puso en evidencia que las áreas bajo la hipérbola se parecen a los logaritmos.
El trabajo de este autor no se sitúa en una perspectiva ligada específicamente a los logaritmos, sino más bien en un intento de resolución de problemas generales de cuadraturas, muy de moda en esta época y en un estilo completamente tradicional; el aspecto innovador reside en la utilización de cierto paso al infinito para justificar la primera parte de su demostración. Estamos sin embargo antes de la era de LEIBNIZ y de NEWTON.
La relación del cálculo del área bajo la hipérbola con los logaritmos no es pues de GREGOIRE DE SAINT - VINCENT; su obra, en principio desconocida, ha sido objeto de críticas, fundadas por otra parte en lo que concierne a la cuadratura del círculo. Será uno de sus defensores, el jesuita SARASSA quien mencionará que " las áreas hiperbólicas pueden tener relación con los logaritmos"
El cálculo de GREGOIRE DE SAINT - VINCENT se apoya sobre el hecho de que cuando las abscisas están en progresión geométrica, las áreas están en progresión aritmética. Tomemos la hipérbola más simple, de ecuación x.y=1, referida a un sistema de referencia ortonormal. A, B, C, .....serán puntos del eje de abscisas (eje de las "x") en progresión geométrica; D, E, G, .....serán entonces los puntos de la hipérbola correspondientes a estas abscisas. GREGOIRE DE SAINT - VINCENT muestra en primer lugar que las áreas entre la curva y DE por una parte, y entre EG y la curva, por otra, son iguales; al tener los trapecios ADEB y BEGC la misma superficie, las áreas bajo la hipérbola son iguales.
Se encontrará algunos años más tarde, en ciertos manuales de geometría, tal como el de PARDIES (1671), el enunciado del resultado encontrado por DE SAINT - VINCENT, lo que distaba de ser el caso general, ¡ y PARDIES era también un jesuita!
ESTATUS MATEMÁTICO
Si el aspecto analítico del logaritmo, en otros términos, el estatus de función, había sido ya considerado por KEPLER, corresponde a TORRICELLI, seguido por HUYGENS, estudiar la curva logarítmica, y a WALLIS, después de un primer trabajo de MERCATOR, proponer un desarrollo en serie (1667). Esta técnica es nueva y es sin duda uno de los raros atractivos de la obra de MERCATOR; en efecto, este autor no parece haber sabido desarrollar la idea inicial, a saber, la integración de la serie:
En
Log (1+x) | |
Este nuevo aspecto permite entonces un cálculo más fácil de los logaritmos de los números y se encontrará en lo sucesivo en los manuales del siglo XVIII.
En lo que concierne a la curva de la función logarítmica, llamada "curva logarítmica", TORRICELLI propone la gráfica desde 1646, en algunas cartas a sus corresponsales, pero su muerte en 1647 retrasa la difusión. Será a HUYGENS a quien corresponderá exponer sus propiedades en el "Discurso sobre la causa de la gravedad", aparecido en 1690. HUYGENS estaba interesado desde 1651 por los logaritmos y por su cálculo, en particular en el marco de la cuadratura de la hipérbola; había retomado el problema mucho más tarde (1666) cuando participaba en los trabajos de la nueva Academia Real de Ciencias de París, y había utilizado la noción en cuestiones de probabilidad y de combinatoria.
Los logaritmos en esa época forman parte realmente del corpus matemático; no se trata de un simple método de cálculo, sino de un dominio completo. Se hallan en numerosas obras sin que su estatus teórico suponga ningún problema.
LA HERRAMIENTA LOGARÍTMICA
Los logaritmos en cuanto herramienta serán de gran ayuda para el nacimiento de la física matemática a finales del siglo XXVII. Así ocurre con el "Discurso sobre la causa de la gravedad" de HUYGENS, y también con los diferentes trabajos sobre la presión atmosférica, en particular los de MARIOTTE.
Es preciso ver la utilización de los logaritmos siguiendo cuatro directrices:
- la primera es la que los genera, a saber, el cálculo de fórmulas geométricas, utilizadas en astronomía y aplicacadas en navegación, y también, de modo más simple, en agrimensura. Se publicarán muchas tablas con formato de bolsillo para su utilización sobre el terreno o a bordo de los navíos. Estas tablas irán precedidas de un manual de uso, e incluirán también una tabla de logaritmos de senos.
- la segunda, más simple aún, es la de la aplicación a todo cálculo multiplicativo. Condujo a la construcción de "reglas de cálculo", al empleo por todo estudiante de bachillerato de una tabla para cualquier operación en ciencias físico - químicas y a la elaboración de algoritmos para las máquinas de calcular contemporáneas.
- la tercera consiste en conjeturar a partir de experiencias con modelos donde los logaritmos entraron en juego por comparación de valores. Poner de manifiesto una relación entre medidas en progresión aritmética con otra serie en progresión geométrica conducirá a considerar el primer fenómeno como un logaritmo del segundo. Las escalas logarítmicas son hoy día moneda corriente....
- la última es totalmente teórica; la introducción por LEIBNIZ y NEWTON del cálculo diferencial e integral permitirá numerosos razonamientos analíticos, concernientes a fenómenos físicos o químicos, pudiendo conducir por simple integración de los inversos a los resultados logarítmicos.
Los logaritmos utilizados en los tres primeros casos serán los de BRIGGS, es decir los logaritmos decimales; por el contrario, la integración introduce los logaritmos "naturales", llamados "neperianos" en honor al padre fundador.
EXPLORACIÓN MATEMÁTICA
En el campo de las matemáticas puras, los logaritmos introducen nuevas magnitudes trascendentes. Contribuyen por consiguiente a ampliar el campo de comprehensión de los números; sin embargo, no se puede hablar de función, de función logarítmica en el sentido moderno, antes de que intervenga EULER en la segunda mitad del siglo XVIII. Esto no impide a LEIBNIZ y a NEWTON utilizar las relaciones: (escritas con notación moderna)
como lo atestigua un manuscrito del primer autor fechado en 1675.
Es EULER quien de nuevo, en las "Institutions de calcul integral" publicadas de 1668 a 1770 tratará de manera magistral la integración de los logaritmos. La utilización de la integración por partes es sistemática y conduce a una última operación, sea directamente integrable o bien desarrollable en serie entera.
Además al principio del siglo XVIII , LEIBNIZ y JEAN BERNOULLI sostienen una controversia sobre la existencia de los logaritmos de los números negativos, e incluso de los imaginarios. EULER, en 1749 cerrará el debate abandonando el carácter unívoco del logaritmo; un número tiene una infinidad de logaritmos (complejos) de los cuales sólo uno es real.
Finalmente, es necesario evocar la exponencial, que según se admite fue introducida por LEIBNIZ y JEAN BERNOULLI, en el marco de sus trabajos en análisis. Esta nueva noción será desarrollada por EULER, y le permitirá resolver el problema de la catenaria en su "Iniciación al análisis infinitesimal" de 1748.
CONCLUSIÓN
Desde su introducción, los logaritmos pueden encontrarse tanto en los manuales de aritmética como en los de análisis. Objeto y método, no sólo han participado del desarrollo de las Matemáticas, sino también de la historia de las ciencias físico - químicas. La ph - metría, por ejemplo, no habría podido ser concebida a principios del siglo XX sin la ayuda de este concepto matemático. Surgidos de una idea de hecho muy simple, los logaritmos continúan siendo un instrumento tal vez modesto, pero a pesar de todo esencial para el conocimiento científico.